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Anomalous hydrodynamical dispersion and the transport with multiple families
of paths in porous media

Manuel O. Ca´ceres*
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We investigate a family of probability distributions that shows anomalous hydrodynamic dispersion, by
solving a particular class of coupled generalized master equations. The Fourier-Laplace solution is obtained
analytically in terms of the matrix Green function method; then the Coats-Smith concentration profile is
revisited in a particular case. Two models of disorder are worked out explicitly, and the mean current is
asymptotically calculated. We present an approximation method to calculate the first passage time distribution
for this stochastic transport process, and as an example an exact Markovian result is worked out; scaling results
are also shown. We discuss the comparison with other different methods to work out complex diffusion
phenomena in the presence of disordered multiple transport paths. Extensions when the models are nondiffu-
sive can also be solved in the Fourier-Laplace representation.

DOI: 10.1103/PhysRevE.69.036302 PACS number~s!: 47.55.Mh, 66.30.Lw, 05.60.2k, 47.90.1a
g

e
n
m
t

us
ol
ow
on
a

l
or
ds
s
r

r-
a

ive
f
fi

te

les

-

to
uit-

the
for
sing
-
heir

ble
of
t a

a
last
to

tak-
ing
e-
we

ith
ian
his
e-
I. INTRODUCTION

Hydrodynamic dispersion—dynamic convective mixin
of two miscible fluids assisted by molecular diffusion@1#—is
an important phenomenon relevant to secondary oil recov
chemical packed-bed reactors, pollution of soil and grou
water aquifers by nuclear wastes, etc. Thus, hydrodyna
dispersion has become—for some years now—a subjec
great interest in many areas of science and engineering.

If a porous medium is macroscopically homogeneo
then the concentration profile of a solute mixing with a s
vent by dispersion should be Gaussian at long times. H
ever, many experimental data indicate significant deviati
from a normal distribution. This is sometimes refereed to
anomalous dispersion. It is well known that most natura
porous media, such as oil reservoirs, contain dead-end p
A fluid in such pores communicates with the flowing flui
only by molecular diffusion. Such a mechanism of ma
transfer between the flowing fluids and the dead-end po
was invoked many years ago by Deans@2# and Coats and
Smith @3# in order to explain the origin of anomalous dispe
sion. These authors developed a semiempirical model to
count for the anomalous hydrodynamics dispersion.

The Coats-Smith model is a one-dimensional convect
diffusion equation~CDE! which reproduces the effects o
transient anomalous transport on the concentration pro
Cf , by introducing atransient loss termin the CDE propor-
tional to the rate of the concentration in the stagnantCs , or
dead-end volume, i.e.,

]Cf

]t
52

]Cs

]t
2V

]Cf

]x
1DL

]2Cf

]x2
, ~1!
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hereV is the macroscopic mean velocity of the flow andDL
is the longitudinal dispersion coefficient. Then the ra
]Cs /]t is characterized by a mass transfer coefficientKc of
the form

]Cs

]t
5Kc~Cf2Cs!, ~2!

andKc
21 can be interpreted as the time that the fluid partic

spend in the stagnant regions.
The Coats-Smith-Baker@4# model is a little more sophis

ticated; it is sometimes assumed that a fractionf of the pore
volume is available for the flow, while (12 f ) is the stagnant
fraction; sof andKc are treated as adjustable parameters
fit the data. Using the Coats-Smith-Baker model, and s
able boundary conditions, Bacriet al. @5# attribute the tran-
sient anomalous dispersion in their data to the fact that
length of their experimental setup was too short to allow
the development of Gaussian dispersion. Nevertheless, u
the same model Gistet al. @6# attributed the anomalous ef
fect, in their experiment, to the heterogeneous nature of t
porous medium. Thus, as was remarked by Sahimi@1#, it is
important to understand why the Coats-Smith model is a
to provide such a good fit to the data. However, the origin
the anomalous transient in the concentration profile is ye
controversial question.

In this work we revisit the Coats-Smith equation from
mesoscopic point of view in an attempt to address the
question. Particularly, starting from a master equation—
describe the presence of multiple transport paths— and
ing into account the disorder effect into the correspond
transition and exchangematrices, we have been able to r
visit the Coats-Smith equation in its lattice versions. Then
can go one step further and generalize the Coats-Sm
model inn dimensions and consider generalized non-Fick
operators for each disordered multiple transport path. T
generalization gives the possibility of understanding the m
©2004 The American Physical Society02-1
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soscopic nature of the Coats-Smith model and tackling a
range of transport problems which are outside of the scop
the Coats-Smith equation; for example, we could work
the problem of flow transport in stratified and disorder
porous media with fractures.

The outline of the paper is as follows. In Sec. II, w
present a generalized master equation with an internal s
~for a given realization of the disorder! that describes the
system of interest, i.e., we use the theory of the multis
continuous time random walk~MCTRW! @7,8# to tackle the
problem of complex transport phenomena in random syst
and in the presence of convection and multiple path optio
The description of the models of disorder, employed in o
studies @9,10#, and the comparison with the Coats-Sm
equation and their generalizations are given in Secs. II A
II B. The solution for the concentration profiles~probability
distributions! averaged over the disorder is presented
terms of the matrix Green function method in Sec. III; also
Sec. III A two applications are presented, in particular,
show—for two different models of disorder—the asympto
temporal behavior of the current~i.e., the response to th
injection of an initial pulse!; in Sec. III B we apply our
method to calculate the exact solution of the Coats-Sm
profile. The theory of the first passage time distribution w
internal states is presented in Sec. IV; in Sec. IV A we ap
this approach to calculate a Markovian exact result and
present scaling results. Finally, in Sec. V, we briefly summ
rize the results of our work and present our future progra
Appendix A is devoted to the calculation of the average o
the disorder, and in Appendix B we show an alternative stu
of the first passage time distribution for stochastic proces
with internal states.

II. MODELING A MASTER EQUATION WITH
DISORDERED MULTIPLE TRANSPORT PATHS

Recently it has been remarked that simple description
terms of single distributions are totally inadequate to d
scribe the flow transport in rocks consisting of interco
nected and intertwined networks of fractures and po
ot
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@11,12#; then it was suggested that, in general, the start
point to study this type of complex transport phenome
~such as transport in polycrystal, porous catalysts, coal
methane reservoirs, geological systems with fractures
pores, etc.! should be done in terms of a master equat
with multiple families of transport paths@13#. In that refer-
ence the disorder was considered in both thetransition ma-
trix of the random walk and theexchangematrix which gives
the rate of transition between different transport paths a
given site. Hughes and Sahimi@13# introduced the average
over the disorder using a sort of effective medium appro
mation~EMA! with internal states. Many different models o
disorder were solved, but the general case in which b
transitionandexchangedisorder are present was not tackle
due to the great complexity of the algebra@14#. Here we are
going to bypass this difficulty by introducing an alternati
procedure to take the average over the disorder; this is
principle, a useful approximation for the calculation of th
mean probability distributions. As a bonus, and for a spe
case of disorder we recover the Coats-Smith equation, so
can immediately generalize this equation to many differ
interesting physical situations.

Let Rl( j ,t) be the probability that a walker arrives at si
j on pathl just at timet. Then the functionsRl( j ,t) obey the
following continuous-time recurrence relations@8,15#:

Rl~ j ,t !5(
j 8

(
l 8

E
0

t

C l l 8~ j , j 8,t2t! Rl 8~ j 8,t! dt

1d~ t ! d j 0 cl with 0<cl<1, ~3!

where the elementsC l l ( j , j 8,t) of the matrix transition prob-
ability density are associated with the jump of a walker
path l from site j 8 to j after a waiting timet. The starting
point to describe a MCTRW@16# is the characterization o
the waiting-timematrix C. Consider, for example, a system
with two possible transport pathsB andA ~its generalization
to N possible transport paths is obvious!, then for a fixed
realization of the disorder we can write@9,10,17#
C5S Bi j expS 2t(
m

Bm jDf j
B~ t ! d i j expS 2t(

m
Am jDc j

BA~ t !

d i j expS 2t(
m

Bm jDc j
AB~ t ! Ai j expS 2t(

m
Am jDf j

B~ t !
D , ~4!
ny
whereBi j is the transition probability rate~in the pathB)
from sitej to i. exp(2t(mBmj) is the probability that no jump
~along the pathB) to another site has occurred up to timet
after the last step~i.e., thesojourn probability at sitej into
the pathB). f j

B(t) is the probability that the walker does n
leave~from site j ) the pathB during the time intervalt since
the last step.c j
AB(t) dt is theexchangeprobability ~at sitej )

at time t1dt from pathB to A.
Similar definitions follow for thetransitionandexchange

components along pathA; for example,Ai j is the transition
probability rate~in pathA) from site j to i, etc. @19#.

Note that the integral in time and sum over sites of a
2-2
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column of C gives 1, this indicates that thewaiting-time
matrix is properly defined~the MCTRW is well normalized!;
for example, for column 1 we get

I5E
0

`

(
i

Bi j expS 2t(
m

Bm jDf j
B~ t ! dt

1E
0

`

(
i

d i j expS 2t(
m

Bm jDc j
AB~ t ! dt

5E
0

`

expS 2t(
m

Bm jD S (
i

Bi j f j
B~ t !1c j

AB~ t ! D dt.

Defining b j[(mBm j it is simple to prove thatI51; this is
so because

I5b jE
0

`

e2b j tf j
B~ t ! dt1E

0

`

e2b j tc j
AB~ t ! dt

5b j Lb j
@f j

B~ t !#1Lb j
@c j

AB~ t !#,

where Lu@ f (t)#[ f̂ (u) indicates the Laplace transform o
any function f (t). In general, using thatf(t)51
2*0

t c(t8) dt8, it follows that f̂(u)5(12ĉ(u))/u, then the
proof follows immediately.

The key element in the continuous time random w
~CTRW! theory is the calculation of the effectivewaiting-
time function @20,21#. As in the CTRW theory, in the contex
of the MCTRW the effectivewaiting-timematrix is defined
taking the average—over the disorder—of its elemen
Therefore in the same spirit of the CTRW@22# ~see Appendix
A! we introduce here the following~Hartree! approximation;
for example, to calculate the average of elementsC11 and
C21,

^C11&Disorder[K Bi j expS 2t(
m

Bm jDf j
B~ t !L

.K Bi j expS 2t(
m

Bm jD L ^f j
B~ t !&, ~5!

^C21&Disorder[K d i j expS 2t(
m

Bm jDc j
AB~ t !L

.K d i j expS 2t(
m

Bm jD L ^c j
AB~ t !&. ~6!

Similar expressions follow for the other components^C l l 8&.
The crucial point in a CTRW theory is to assume that af
taking the average, the system is homogeneous in space
is characterized by a translational invariant transition fu
tion l( i 2 j ) in a regular lattice; then the disorder is model
by considering differentwaiting-time functions c(t). The
same happens with the MCTRW theory in the presence
internal states. Then after taking the average over the d
der we define the following functions that characterize
lattice transition into each pathB andA, respectively~for the
separable case!:
03630
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K Bi j expS 2t(
m

Bm jD L 5l1~ i 2 j ! c1
T~ t !,

K Ai j expS 2t(
m

Am jD L 5l2~ i 2 j ! c2
T~ t !.

Consequently the functionsf l
T(t)[12*0

t c l
T(t8) dt8 ~so-

journ! are defined by

K d i j expS 2t(
m

Bm jD L 5f1
T~ t !,

K d i j expS 2t(
m

Am jD L 5f2
T~ t !.

In the same way theexchangebetween paths is characte
ized by thewaiting-timefunctions

^c j
AB~ t !&5c21

E ~ t !,

^c j
BA~ t !&5c12

E ~ t !,

and consequently the functionsf l
E(t)[12*0

t c l 8 l
E (t8) dt8

are defined by

^f j
B~ t !&5f1

E~ t !,

^f j
A~ t !&5f2

E~ t !.

Note that after taking the average over the disorder we
sume thatc l l 8

E (t) andf l
E(t) are homogeneous in space.

With all these functions, we can immediately write dow
the Fourier transform of the effectivewaiting-time matrix
^C&Disorder[h(k,t) in the form

h~k,t ![S h11 h12

h21 h22
D

5S l1~k! c1
T~ t ! f1

E~ t ! f2
T~ t ! c12

E ~ t !

f1
T~ t ! c21

E ~ t ! l2~k! c2
T~ t ! f2

E~ t !
D . ~7!

Here it is important to remark that a Markovian evolutio
will appear if and only if all thewaiting-time functions are
exponential. A typicalwaiting-timefunction is shown in Ap-
pendix A; in particular, in that appendix we calculate a po
sibleexchangewaiting time assuming a model of strong di
order for theexchangeprobability ~at site j ) from pathB to
A.

The general solution of our MCTRW process can be giv
in terms of the matrix Green function~see the following
section!. But, before going ahead with this program, let
introduce here the corresponding generalized master e
tion associated with the MCTRW characterized by t
waiting-timematrix ~7!. Doing this we will be able to estab
lish the connection between the propagator of the MCTR
process and the one from the Coats-Smith equation.
2-3
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A. Computing the generalized master equation

Let Pl(k,t) be the Fourier transform of the probability i
path l and time t. Then the evolution equation governin
these elements is of the form~note that the Fourier transform
is taken over the lattice space! of a generalized master equ
tion with internal states@18#

] tPl~k,t !5E
0

t

(
l 9

L l l 9~k,t2t! Pl 9~k,t! dt

2E
0

t

Pl~k,t! (
l 9

L l 9 l~k50, t2t! dt. ~8!

The interesting point is knowing the relation between
elementsL l l 9(k,t) and the elements of thewaiting-timema-
trix hl l 9(k,t). This connection is well established@20,21,23#,
in particular, the Fourier-Laplace representation is given

L̂ l l 8~k,u!5
u ĥ l l 8~k,u!

12(
l 9

ĥ l 9 l 8~k50,u!

. ~9!

Thus we can rearrange Eq.~8! to show the explicit structure
of its elements. Using Eq.~7!, we see that only the diagona
elements of Eq.~9! are k dependent. For the componentl
51 we have

] tP1~k,t !5E
0

t

@L11~k,t2t!2L11~k50, t2t!# P1~k,t! dt

2E
0

t

L21~ t2t! P1~k,t! dt

1E
0

t

L12~ t2t! P2~k,t! dt, ~10!

and for the componentl 52 we have

] tP2~k,t !5E
0

t

@L22~k,t2t!2L22~k50, t2t!# P2~k,t! dt

1E
0

t

L21~ t2t! P1~k,t! dt

2E
0

t

L12~ t2t! P2~k,t! dt, ~11!

where

L̂ l 8 l~u!5
u Lu@f l

T~ t !c l 8 l
E

~ t !#

12Lu@f l
T~ t !c l 8 l

E
~ t !#2Lu@l l~k50!c l

T~ t !f l
E~ t !#

for lÞ l 8, ~12!
03630
e

L̂ l l ~k,u!

5
u l l~k! Lu@c l

T~ t !f l
E~ t !#

12Lu@f l
T~ t !c l 8 l

E
~ t !#2Lu@l l~k50!c l

T~ t !f l
E~ t !#

.

From Eq.~12! we may describe a great diversity of phys
cal situations, and while in fact this has been known
many years in the literature of statistical physics, it seem
me that it has not yet been fully explored in the area of flu
physics. Just in order to clarify this point let us revisit th
Coats-Smith equation from our mesoscopic point of view

The Coats-Smith equation revisited

Here we would like to remark that if there is no disorde
Eqs.~5! and ~6! are exact results and thewaiting-timefunc-
tions must be exponential functions. On the other hand, if
disorder is weak~it means that the kinetic coefficients a
renormalized quantities but the universal laws remain
changed! the waiting-timefunctions can be approximated t
be exponential, perhaps with different coefficients in orde
characterize the different time scales involved in the proc
~see Appendix A!. Therefore let us assume that thetransition
waiting-timefunctions involved in Eq.~12! are all exponen-
tial. In order to get an explicit result we choose the functio

c l
T~ t !5a l exp~2a l t !, ~13!

then the associated sojourns are given by

f l
T~ t !5exp~2a l t !. ~14!

From Eqs.~13! and ~14!, and taking the Laplace transform
involved in Eq. ~12!, after using the known relation
Lu@e2atf (t)#5 f̂ (u1a), it is simple to see that the off
diagonal elements are the ones responsible of theexchange
between paths

L̂ l 8 l~u!5
ĉ l 8 l

E
~u1a l !

f̂ l
E~u1a l !

for lÞ l 8. ~15!

On the other hand, the diagonal elements give rise to
transport operators into each corresponding path, i.e.,

L̂ l l ~k,u!5a l l l~k!. ~16!

Now we also assume that theexchange waiting timesare
exponential~weak disorder in the Markovian approximatio
see Appendix A!,

c l 8 l
E

~ t !5n l 8 l exp~2n l 8 l t !, ~17!

then the associated sojourns are given by

f l
E~ t !5exp~2n l 8 l t !. ~18!

Thus in the Laplace representation, from Eq.~15! we imme-
diately arrive at the following expressions:

L̂ l 8 l~u!5n l 8 l for lÞ l 8. ~19!
2-4
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As expected, there are no memory effects neither in theex-
changenor in thetransition matrices of the coupled maste
equation@the inverse Laplace transform of Eqs.~16! and~19!
is of the formL21(constant)5constd(t)]; this means that
the MCTRW process is a Markovian one. So from Eqs.~16!
and ~19!, after taking the inverse Laplace transform, we
rive at the following coupled master equations~in its Fourier
representation!:

] tP1~k,t !5a1@l1~k!21#P1~k,t !2n21P1~k,t !

1n12P2~k,t !, ~20!

] tP2~k,t !5a2@l2~k!21#P2~k,t !1n21P1~k,t !

2n12P2~k,t !.

Again, we immediately get back the Coats-Smith equat
~in its lattice version! if we assume the probabilitiesPl(k,t)
to be proportional to the concentration rate
Cl(k,t)/Cl(k,0). Therefore from Eq.~20! taking l2(k)→1
and the Fourier representation of the convection-diffus
operator to bea1@l1(k)21#, andn215n125Kc , we arrive
at the Fourier version of the Coats-Smith equation. This
sult means that the presence of disorder~in the Markovian
approximation! does not change the structure of the Coa
Smith equation, and gives the same evolution equation a
a homogeneous~ordered! system. Thus we have shown th
the Coats-Smith model arises from the mesoscopic des
tion of complex transport in the presence of multiple tra
port paths in a Markovian approximation; this result is
agreement with the idea of multiple transport paths in co
plex media@13#, or composite Markov processes@18#.

Note that, in general, in Eq.~20! the presence of a lattice
Fickian operator@l2(k)21# allows for diffusion also in path
A, this fact gives us the possibility to consider the case w
the concentration in the stagnant regions can diffuse ov
very long time scalea2

21.
In order to exemplify that the Fourier representation

Eqs.~1! and~2! corresponds to our Eq.~20! it is still neces-
sary to give thetransition lattice structure functionl1(k).
From this program it will be trivial to see that our Eq.~20!
may be generalized to a Coats-Smith equation inn dimen-
sions. Consider, for example, a two-dimensional latt
where the macroscopic Darcy flow velocityV points along
the directionx̂. The lattice structure is given by

l1~k!5(
r

exp~ ik•r ! l~r 2r 8!.

Because the lattice vectorr is translational invariant, and
considering that the one-step~elemental! next-neighborhood
transitions~in a simple square lattice! are characterized by
probability to jump to the right~left!, px(qx), and a probabil-
ity to jump up~down!, py(qy), we get for the lattice structure
the function
03630
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e

l1~kx ,ky!5px eikxa1qx e2 ikxa1py eikya1qy e2 ikya

52pycos~kya!1~122py!cos~kxa!

2 i ~122py22px!sin~kxa!, ~21!

wherea is the lattice parameter and 15px1qx1py1qy ; in
the second line we have used thatpy5qy ; so we can identify
a mean velocity flowV. To see this more easily, take the lim
of small lattice parametera. Then

l1~kx ,ky!.12 i ~122py22px!~kxa!

22py

~kya!2

2
2~122py!

~kxa!2

2
1•••.

~22!

This means that 2pya
2}D' ~transverse dispersion coeffi

cient!, (122py)a
2}DL ~longitudinal dispersion coefficient!,

and the mean velocity flow is characterized by (2112py
12px)a}V. Of course, from the presentlattice Coats-Smith
version~20!, more general situations can also be taken i
account. This is a nontrivial result that is hard to get in t
context of the EMA theory; see, for example, Ref.@24#
where we have been able to solve an asymmetric anisotr
disordered media in the context of EMA~but without internal
states!. In the following section we leave, for a moment, th
discussion about the lattice structurel1(kx ,ky), to get into
the more interesting matter concerning memory effects i
generalized Coats-Smith equation~due to the presence o
disorder!.

B. The generalized Coats-Smith equation

In this section we explicitly use the fact that there is
transport in the pathA; then as before we assume in Eq.~4!
that Ai j 50. This implies thatl2(k)51 and f2

T(t)51. So
from Eq. ~7! the matrixh(k,u) will look like

h~k,t !5S l1~k! c1
T~ t ! f1

E~ t ! c12
E ~ t !

f1
T~ t ! c21

E ~ t ! 0
D . ~23!

In the present section we would like to comment on so
situations which are in fact beyond the Coats-Smith mod
Consider the case when the disorder produces a memory
nel in thetransition and theexchangematrices. In this case
the diagonal elements of the generalized master equation

L̂11~k,u!5
u l1~k!Lu@c1

T~ t !f1
E~ t !#

12Lu@f1
T~ t !c21

E ~ t !#2Lu@c1
T~ t !f1

E~ t !#
,

L̂22~k,u!50, ~24!

and the off-diagonal elements are given by

L̂12~u!5
u Lu@c12

E ~ t !#

12Lu@c12
E ~ t !#

, ~25!
2-5
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L̂21~u!5
u Lu@f1

T~ t !c21
E ~ t !#

12Lu@f1
T~ t !c21

E ~ t !#2Lu@c1
T~ t !f1

E~ t !#
.

This is the general case when no transport is allowed
pathA; many particular situations can be analyzed consid
ing different expressions for thewaiting-timefunctionsc l

T(t)
andc l l 8

E (t).

1. Mixing strong disorder and weak disorder

Consider the case when the strong disorder is present
in the transition waiting time. This case corresponds to t
situation when

c l
T~ t !5arbitrary,

c l l 8
E

~ t !5exponential.

Using the exponential model~17!, from Eqs.~24! and ~25!

we arrive to the following elementsL̂ l l 8(k,u):

L̂11~k,u!5l1~k!
ĉ1

T~u1n21!

f̂1
T~u1n21!

, L̂22~k,u!50, ~26!

L̂12~u!5n12, L̂21~u!5n21. ~27!

Due to the shift in the Laplace argument ofL̂11(k,u), there
will not be a long-time anomalous effect in the evolution
the process; even in the case whenĉ1

T(u) is not analytic
aroundu50. Note that the Laplace structure of the eleme
L̂11(k,u) will drive to a transient memory effect at sho
times, of the order ofn21

21 , even ifc1
T(t) were exponential.

Consider now the case when the strong disorder is o
present in theexchangewaiting time. This case correspond
to the situation when

c l
T~ t !5exponential,

c l l 8
E

~ t !5arbitrary.

Suppose, for example, the symmetrical caseĉ12
E (u)

5ĉ21
E (u)5ĉE(u), and in addition thatĉE(u) represents the

presence of strong disorder~see Appendix A!. Then ĉE(u)
must be a nonanalytic function of the Laplace variable inu
50. A possible representation for smallu is

ĉE~u!5~11Cuu!21 with 0,u,1,C5const. ~28!

We see that for very long times~in the Laplace representa
tion u;0): ĉE(u);(12Cuu), this fact leads to a long-tai
distribution with a divergent mean waiting time. From Eq
~28! and ~25! it is simple to show thatL̂12(u)5u12u/C. In
general, from Eqs.~24!, ~25!, and ~13! it follows that the
elementsL̂ l l 8(k,u) are

L̂11~k,u!5a1 l1~k!, L̂22~k,u!50, ~29!
03630
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L̂12~u!5u12u/C, L̂21~u!5
ĉE~u1a1!

f̂E~u1a1!
. ~30!

As before, due to the shift in the Laplace argument
L̂21(u), there will not be a long-time anomalous effect
this element, even in the case whenĉ1

E(u) is not analytic
aroundu50 as in Eq.~28!. This model corresponds to con
sidering strong disorder in theexchangematrix, but a Mar-
kovian approximation in thetransition matrix. Physically
this means that changing the paths, at any sitej, are rare
events; on the other hand, the disorder only introduce
renormalization in the kinetic coefficients of the transp
operator into the pathB. As mentioned before, assumin
c1

T(t)5a1exp(2a1t), and the expression for theexchange
waiting time ~28! it is possible to see that the asymptot
long-time expression for the elementsL l l 8(k,t2t) is given
by

L~k,t2t!.S a1l1~k! d~ t2t! C2 /~ t2t!22u

C1d~ t2t! 0 D ,

~31!

whereC1 andC2 are constants. Thus the long-time evolutio
equation that governs the concentration profile can be r
from Eqs.~10! and ~11! considering the memory~31!. This
result predicts that there will be long tails for the long tim
regime. Note that we have used that the Laplace shift in
argument ofL̂21(u) removes the nonanalyticity coming from
ĉE(u).

To end this discussion consider here the case when
strong disorder is present in both: thetransition operator,
namely, into the pathB, and in theexchangebetween paths.
This case corresponds to the situation when

c l
T~ t !5arbitrary,

c l l 8
E

~ t !5arbitrary.

If the disorder introduces nonanalytic expressions for
transition and theexchange waiting times~which might, for
example, result from energetic or spatial disorder on
paths@10#!, then long-memory kernels will appear in all th
elementsL̂ l l 8(k,u). In this case, depending on the particul
structure of each functionc l

T(t) and c l l 8
E (t), the elements

L̂ l l 8(k,u) can be nonanalytic inu50. We would like to
stress that if the memory functionsL̂ l l 8(k,u) are nonana-
lytic, this leads to the occurrence of a long-time anomalo
behavior ~long-time tails or asymptotic non-Gaussian pr
files! in the concentration.

2. Extensions

Another interesting model is when we consider that
structure function, which characterizes the transport in a p
ticular path l, has a nonseparable structure of the fo
ĉ l

T(k,u). This is just the case that appears when we stud
dye in a steady flow through a fracture network@25#. Thus
2-6
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the interesting case when multiple families of transport pa
include the possibility of a fracture network in a porous roc
can also be analyzed by using the present approach; co
ering, for example, that theh(k,t) matrix is given by

h~k,t !5S l1
T~k!c1

T~ t ! f1
E~ t ! f2

T~ t ! c12
E ~ t !

f1
T~ t ! c21

E ~ t ! l2
T~k,t ! f2

E~ t !
D ,

where, of course,f2
T(t)512*0

t l2
T(k50,t) dt.

It should be remarked that even when all these model
coupled master equations could look unwielding, we c
work out their solution because we can map this process
a MCTRW one~see the following section!.

III. COMPUTING THE MATRIX GREEN FUNCTION AND
THE MOMENTS OF THE MCTRW PROCESS

In general, if we know the matrixĥ(k,u), we can solve
the Fourier-Laplace transform of the probabilityPl( j ,t) to
be at sitej in the pathl at time t. The equation describing
these probabilities is given by the relation@8,10,15,20,21,23#

Pl~ j ,t !5E
0

t

F l~ t2t! Rl~ j ,t! dt, ~32!

where F l(t) is the probability that in the interval of time
@0, t# no further jump occurred,

F l~ t !512(
j 9

(
l 9

E
0

t

h l 9 l~ j 9,t! dt. ~33!

Note that the solution ofRl( j ,t) can be found from Eq.~3!
using C→h and taking the Fourier-Laplace transform. A
usual, we start with our walkers at origin; however, we allo
them to be situated on different paths. The normalized ini
condition is then

Pl~ j ,0!5d j 0 cl ,

with c11•••1cN51 (N is the number of different paths!.
Notice that Eq.~32! is a convolution in time, which simpli-
fies in the Laplace representation. Furthermore, forF l(t)
one has in the Laplace representation

F̂ l~u!5

12(
j 9

(
l 9

ĥ l 9 l~ j 9,u!

u
. ~34!

In the following we will use the vectorial notation

P̂~k,u!5@ P̂1~k,u!, . . . ,P̂N~k,u!#

and denote byP0(k) the Fourier transform of the initial oc
cupation probability P( j ,t50), i.e., P0(k)[P(k,t50).
Here we are interested in a Green function, so we use
initial condition P0(k)5P0 independent of the Fourier var
able k. The solution of the MCTRW in the Fourier-Laplac
representation is well known@8,15,23#. For instance,
use Eqs.~32! and ~33! and the recurrence relation~3!
03630
s
,
id-

of
n
th

l
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in the Fourier-Laplace representation wi
ĥ(k,u)5Lu@Fk@^C&Disorder##; then

P̂~k,u!5F̂~u!•@12ĥ~k,u!#21
•P0 , ~35!

whereF̂(u)5@d l l 8F̂ l(u)# is a diagonal matrix, andĥ(k,u)
is the Laplace transform of the matrix characterized
Eq. ~7!. Thus the matrix Green function is jus
F̂(u)•@12ĥ(k,u)#21. From this expression the determin
tion of many quantities of interest is reduced to a Lapla
inversion. For example, from Eq.~35! all the moments of the
distributionP( j ,t) can be easily calculated . One has~in one
dimension!

j l
m~ t ![(

j
j m Pl~ j ,t !5~2 i !mL 21F ]m

]km
P̂l~k,u!G

k50

.

Note that here,j l
m(t) means a random walk average. Setti

Q̂[@12ĥ(k,u)#21, for example, the first and second m
ments can be written as

ĵ l~u!52 i F F̂•Q̂•

]ĥ

]k
•Q̂•P0Uk50G

l

,

ĵ l
2~u!52H F̂•F2Q̂•

]ĥ

]k
•Q̂•

]ĥ

]k
•Q̂

1Q̂•

]2ĥ

]k2
•Q̂•P0G

k50
J

l

.

It is now simple to show that the current in the pathl is
given, in the Laplace representation@10#, just by

Î l~u!5uĵ l~u!5~2 i !uF F̂•Q̂•

]ĥ

]k
•Q̂•P0Uk50G

l

. ~36!

These results show that many important quantities can
calculated straightforwardly from our approach; thus t
study of the time transients is indeed reduced to the anal
of the inverse Laplace transform.

A. Applications „the current…

Here we shall use the matrix Green function method
calculate the current in a one-dimensional system in the p
ence of disordered multiple transport paths. In particular,
can analyze the hydrodynamics dispersion for an initial pu
condition ~Dirac-d!, for two models of disorder, namely
when the strong disorder is in thetransition, and when it is in
the exchangematrix.

Let us start with the first case; then assuming that
transport only occurs in the pathB, and that the strong-
disorder is only present in thetransition matrix ~i.e., in the
pathB), see expressions~26! and~27!. Thus the correspond
ing ĥ(k,u) matrix is given by
2-7
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MANUEL O. CÁCERES PHYSICAL REVIEW E69, 036302 ~2004!
h~k,u!5S 12

n21f1
T~u1n21! 0

D , ~37!

where the~asymptotic! lattice-Fickian operator is given in terms of a Taylor expansion of the structure function@in one
dimension use Eq.~22! with py5qy50],

l1~kx!.12 i ~122px!~kxa!2
~kxa!2

2
1•••, with 0<px<1. ~38!
th
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In order to simplify the algebra, let us assume that
exchangerates are symmetric, thenn215n125Kc ; so the
current in pathB can easily be calculated using Eq.~37! in
Eq. ~36! with l 51. In this case the current~i.e., a quantity
proportional to the mean velocity of the propagating pu
into the transport pathB) is characterized by

Î 1~u!5
~2px21!~Kc1u!32u a

C u ~2Kc1u!2
for 0,u,1, ~39!

where we have used the initial conditionP05(1,0) and the
nonanalytic transition waiting time c1

T(u)5(11C uu)21.
This expression gives~in the Laplace representation! both
the transient and long-time behaviors of the current in
pathB. For example, using the inverse Laplace theorem i
simple to show that for timest@Kc

21 the temporal
asymptotic behavior is a constant,

I 1~ t !.
~2px21!Kc

12u a

4C
with 0,u,1. ~40!
g

th
e
a
vo

03630
e

e

e
s

This means that asymptotically in time, the hydrodynam
dispersion turns to be diffusive. So in this case the prese
of strong disorder, in thetransitionmatrix, only introduces a
transient anomalous profile. We say this because asymp
cally the mean velocity of the packetI 1(t→`) is just a con-
stant renormalized by the strength of the disorder~i.e., the
parameteru!.

Now let us study the second case, i.e., when the str
disorder is present only in theexchangematrix, see expres-
sions~29! and~30!. Therefore the correspondingĥ(k,u) ma-
trix is given by

ĥ~k,u!5S a1 l1~k! f1
E~u1a1! c12

E ~u!

c21
E ~u1a1! 0

D . ~41!

As before, we assume here that theexchangeis symmetric
c12

E (u)5c21
E (u), but a nonanalytic function aroundu50

like in Eq. ~28!. The current in pathB can be calculated using
Eq. ~41! in Eq. ~36! with l 51. In this case the current will be
characterized by
Î 1~u!5
ua1 ~2px21!~a11u!2u~11C uu!2 a

$a1 uu1u@~a11u!u1uu
„11C ~a11u!u

…#%2
, for 0,u,1, ~42!
the

ns

tic
e

where we have used the initial conditionP05(1,0). This
expression gives the behavior of the current into the pathB.
For example, in this case using the Tauberian theorem we
the asymptotic long-time behavior,

I 1~ t !.~2px21!a1
2u21 a

t2(12u)
for 0,u,1, ~43!

thus, showing an asymptotic vanishing current due to
presence of long-time tail distributions. Physically this b
havior is due to the fact that particles that get into stagn
domains, or dead-end volumes, can rarely leave those
umes. These rare events are just characterized by theex-
changewaiting-time distributionc12

E (u) ~see Appendix A!.
et

e
-
nt
l-

The more general case when bothtransitionandexchange
matrices have strong disorder can also be analyzed in
same way by using the correspondingĥ(k,u) matrix; work
along this line will be presented elsewhere.

B. Application to a Markovian case: The Coats-Smith profile

Here we shall use our method to calculate~in the continu-
ous limit! the Green function of the Coats-Smith equatio
~1! and ~2!. From Eq.~35! the matrix Green function of the
problem can be found if we known the matrixĥ(k,u). As we
have remarked before~see Sec. II A 1!, using Eq.~23! in the
Markovian case @c1

T(t)5a1exp(2a1t), cnm
E (t)5nnmexp

(2nnmt)], and considering the one-dimensional asympto
Lattice-Fickian operator~38!, it is possible to see that th
matrix ĥ(k,u) can be written in the form
2-8
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ĥ~k,u!5S a1 F12 i ~122px!ka2
1

2
~ka!2G

a11u1n21

n12

u1n12

n21

a11u1n21
0

D .

~44!

In fact, to solve the Coats-Smith equations~1! and ~2! cor-
responds to studying our MCTRW scheme using Eq.~44!
with n125n215Kc . The more general casen12Þn21 can
eventually be mapped to the Coats-Smith-Baker@4# model
where a fractionf }n12 of the pore volume is available fo
the flow, while (12 f )}n21 is the stagnant fraction. From
now on let us analyze the Coats-Smith model.

The matrix Green function of the corresponding MCTR
in the lattice representation, is given by

Ĝ~ j ,u!5
a

2pE2p/a

1p/a

F̂~u!•@12ĥ~k,u!#21e2 ik j dk.

~45!

In the casea!1 we can consider the continuous lim
Ĝ( j ,u)→Ĝ(x,u) dx, therefore Eq.~45! reads

Ĝ~x,u! dx5
dx

2pE2`

1`

F̂~u!•@12ĥ~k,u!#21e2 ikx dk.

~46!

Defining the quantities,

DL[
a1a2

2
, V[a~2px21!a1 .

The Coats-Smith solution@for a delta initial conditiond(x)]
can be read from Eq.~46! if we identify

P̂~k,u![Ĝ~k,u!•P05„P̂1~k,u!,P̂2~k,u!…

5„Ĉf~k,u!,Ĉs~k,u!…,

where P05Fk„Cf(x,0),Cs(x,0)…[„Cf(0),Cs(0)…, with
Cf(0)1Cs(0)51.

Before taking the inverse Fourier transform~46!
we need to calculate the elements of the integra
P̂(k,u)[F̂(u)•@12ĥ(k,u)#21

•P0; therefore using Eqs
~34! and ~44! we get the expressions

Ĉf~k,u!5
Cs~0!Kc1Cf~0!~Kc1u!

A , ~47!

Ĉs~k,u!5
Cf~0!Kc1Cs~0!~Kc1u1Dk22 ikV!

A ,

~48!

whereA5u(2Kc1u)1DLk2 (Kc1u)2 ikV (Kc1u). Note
that asymptotically each componentCf(x,t) and Cs(x,t)
normalizes to1

2; i.e., in the limitu→0 we get
03630
,

d,

Ĉf~k50, u!5Ĉs~k50, u!;
1

2u
.

In general, the solutionĈf(k,u) can be written in the
compact form

Ĉf~k,u!5
1

uR~u!1k2D~u!2 ikV~u!
, ~49!

where

R~u![
~2Kc1u!

Kc1Cf~0!u
, D~u![

DL~Kc1u!

Kc1Cf~0!u
,

V~u![
V~Kc1u!

Kc1Cf~0!u
.

Therefore the profileĈf(x,u)5F 21@Ĉf(k,u)# is given
by @26#

Ĉf~x,u!

5
1

2D~u!

expF2uxuA u

D~u!
1S V

2DL
D 2

1xS V

2DL
D G

A u

D~u!
1S V

2DL
D 2

,

~50!

where

D~u![
D~u!

R~u!
5

DL~Kc1u!

2Kc1u
.

From now on we shall use that the physically interest
initial condition is @Cf(0),Cs(0)#5(1,0); therefore we ar-
rive at the expected conclusion that asymptotically, at lo
time, the Coats-Smith solution behaves likes a Gaussian
file ~i.e., solution of a CDE! with coefficientsDL/2 andV/2,

Cf~x,t !;
1/2

A4ptDL/2
expS 2

~x2Vt/2!2

4tDL/2 D ,

xP~2`,1`!, t@Kc
21 .

The whole transient behavior can numerically be obtained
calculating the inverse Laplace transform of Eq.~50!.

Many other interesting non-Markovian cases, which are
fact related to the problem of disorder, can also be work
out in a similar way from Eq.~35!; its analysis will be pre-
sented elsewhere.

IV. THE FIRST PASSAGE TIME DISTRIBUTION

The MCTRW approach enables us to estimate the fi
passage time distribution for the present problem; this dis
bution is a very important quantity for calculating the ex
times of a test particle in complex media. Here it is importa
2-9
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to stress that there exists a fundamental relation between
first passage time distribution~FPTD! to a site j and the
propagator to find the particle at this site at timet. This
relation expresses that for a Markov process the probab
of occurrence of an event at stepn is composed of the prob
ability of thefirst occurrence at stepn, and of the probability
of first occurrence at stepn8,n times the probability that the
event again occurs after the remainingn2n8 steps.

Consider a uniform lattice of arbitrary dimensionality a
the continuous-time description of a Markov process.
F( j ,tu0,0) be the probability density offirst arrival at sitej at
time t, when the particle starts at sitej 50 and att50. If the
start is not counted as an arrival event, thenF( j 50,t
50u0,0)50. Thus the following relation holds@15#:

P~ j ,tu0,0!5f~ t ! d j 01E
0

t

P~ j ,tu j ,t8!F~ j ,t8u0,0! dt8,

~51!

wheref(t) is the sojourns probability. Using that the lattic
is translationally invariant and assuming that the propag
is homogeneous in time, we get

P~ j ,tu0,0!5f~ t ! d j 01E
0

t

P~0,t2t8u0,0! F~ j ,t8u0,0! dt8.

This equation can immediately be solved in the Laplace r
resentation,

F̂~ j ,uu0,0!5
P̂~ j ,uu0,0!2f̂~u!d j 0

P̂~0,uu0,0!
. ~52!

The important point for considering this result in the co
text of a stochastic theory with internal states, is the fact t
this equation is valid for any Markovian process; thus inste
of Eq. ~51! we can write the following generalization wit
internal states@27#:

Pll 8~ j ,tu0,0!5f l 8~ t !d j 0 d l l 8

1E
0

t

Pll ~ j ,tu j ,t8! Fll 8~ j ,t8u0,0! dt8.

~53!

This equation is based on the assumption that different in
nal states with the same sitej, visited by the walker, are
counted as distinct events, see our remark in Appendix B
before, from this equation it is possible to get a solution
Fll 8( j ,t8u0,0), from the Laplace representation of Eq.~53!
we get

P̂ll ~0,uu0,0!F̂ ll 8~ j ,uu0,0!5 P̂ll 8~ j ,uu0,0!2f̂ l 8~u! d j 0 d l l 8.
~54!

Now we use thatP̂ll 8( j ,uu0,0) can be written in terms o
the inverse Fourier transform of the matrix Green functio
Note also that from Eq.~35! we have

P̂ll 8~k,uu0,0!5$F̂~u!•@12ĥ~k,u!#21% l l 8.
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So from Eq.~54! ,

F̂ ll 8~ j ,uu0,0!5 P̂ll ~ j 50, uu0, 0!21

3@ P̂ll 8~ j ,uu0,0!2f̂ l 8~u!d j 0 d l l 8#,

and using that@for example, in two dimensional we havej
→( j 1 , j 2); k→(k1 ,k2) anda→(a1 ,a2)]

P̂ll 8~ j ,uu0,0!

5(
l 9

F̂~u! l l 9F a1

2p

a2

2pE0

2p/a1E
0

2p/a2
@12ĥ~k,u!#21

3exp~2 ik• j ! dk1dk2G
l 9 l 8

,

and, becauseF̂(u) is a diagonal matrix we get the fina
result

F̂ ll 8~ j ,uu0, 0!5Q̂l l ~ j 50, u!21Q̂l l 8~ j , u!

2Q̂l 8 l 8~ j 50, u!21 d j 0 , ~55!

where~in general inn dimensions!

Q̂l l 9~ j ,u!5F a1

2pE0

2p/a1
•••

an

2pE0

2p/an
@12ĥ~k,u!#21

3exp~2 ik• j !dk1••• dknG
l l 9

.

Equation~55! gives the desired result, i.e., the FPTD~in
its Laplace representation! from the originj 50 with internal
statel 8 at time t50, to sitej with internal statel at time t;
therefore the problem has been reduced to the calculatio
an inverse Fourier-Laplace transform.

Now going back to our original problem, we have to co
sider that each internal state represents a possible pal.
Nevertheless, a new difficulty appears in our approach, an
is due to the fact that our generalized MCTRW~a possible
generalized Coats-Smith model! could also be a non-
Markovian process due to the memory effects introduced
the disorder average. Then we only can use Eq.~55! as an
approximation. Unfortunately this, of course, is not a pert
bative approximation; but our result gives a plausible a
proach to the problem of solving the FPTD for a no
Markovian process, which in fact is a nontrivial proble
@18#. Indeed, in a future paper we will analyze this distrib
tion in the context of a characterization of the concentrat
profile in a disordered medium with multiple transport pat
@28#.

A. The first passage time distribution
for the Coats-Smith model

Here we shall use our approach to calculate thefirst pas-
sage time distributionassociated with the Coats-Smith equ
tions ~1! and~2!, i.e., a Markovian example. In this case th
probability distribution to reach the positionx5L.0 for the
2-10
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first time, when the particle starts its walk from positionx
50 at time t050, is given by the first passage time dist
bution ~in its Laplace representation!, F̂L(u)
[F̂11(L,uu0,0). Therefore from Eq.~55! we have

F̂L~u!5
Q̂11~x5L, u!

Q̂11~x50, u!
. ~56!

Using the results of Sec. III B@with the initial condition
Cf(0)51] it is simple to see, from Eq.~50!, that

F̂L~u!5
Ĉf~L, u!

Ĉf~0, u!

5expF2LA u

D~u!
1S V

2DL
D 2

1LS V

2DL
D G , ~57!

where

D~u!5
DL~Kc1u!

2Kc1u
.

Formula~57! is an exact result; from this expression it
simple to see that after a time of the order ofKc

21 , the first
passage time distribution can be approximated by using

F̂L~u!.expF2LA2u

DL
1S V

2DL
D 2

1LS V

2DL
D G . ~58!

This expression can immediately be transformed to its t
representation; then taking the inverse Laplace transform
Eq. ~58! we get the FPTD@29#,

FL~ t !.expF V

2DL
S L2

Vt

4 D G L t23/2

A2pDL

expF 2L2

2DLt G , t@Kc
21 .

~59!

Remark. As we have mentioned before, there is nosimple
perturbative approximation to calculateFL(t) for a non-
Markovian process; nevertheless, our result~55! gives a
plausible method to tackle the problem of calculating
FPTD. Indeed, this is a possible approach to analyze sec
ary oil recovery in a disordered medium, work along this li
will be reported elsewhere@28#.

1. Scaling results

From the result~57! we realize that introducing the
change of variables,

t5t S DL

V2 D , x5x S DL

V D ,

the FPDT~in its Laplace representation! can be written in a
simpledimensionless form,
03630
e
of

e
d-

F̂L~U !5expS 2LAU ~2¸c1U !

~¸c1U !
1

1

4
1

L

2D
where U5u S V2

DL
D 21

, L.0, ~60!

andL is a dimensionless distance. Therefore after a trans
time of the order of

¸c
21[~Kc DL /V2!21,

the FPTD of the Coats-Smith process can be approxima
by the universal function

FL~t!;FGauss~t,L!5
Lt23/2

A2p
expFL

2
2

t

8
2

L2

2tG , t@¸c
21 .

~61!

From this expression it is simple to see that the maximum
the FPTD,FGauss(t,L), is located at

tM52612A91L2.

Thus, if tM@¸c
21 , it means that the transient in the Coat

Smith profile is not important because it is very early th
the time scale where the maximum of the CDE profile
located; then, in order to study the hydrodynamics dispers
it is suitable to represent the wholeFL(t) by the Gaussian
approximationFGauss(t,L). Nevertheless, iftM&¸c

21 the
transient in the Coats-Smith profile is very important; th
fact can also be understood in terms of a system-size an
sis. From the conditiontM&¸c

21 , it follows that

L&AS ¸c
2116

2 D 2

29[Lc , ~62!

whereLc is a critical value that characterizes the importan
of the Coats-Smith transient. Thus for a given value of
~dimensionless! parameteŗ c

21 , the FPTD of the system will
show a finite-size transient behavior only ifL&Lc . It is
trivial to realize that if¸c@1 there will not be anomalous
transient hydrodynamics dispersion for any size scaleL.0,
this fact is in agreement with an Heuristic analysis that c
be done by direct inspection in the Coats-Smith equation

Before ending this section let us remark that the char
terization of the critical distanceLc is a result that helps to
solve the controversial question about the origin of t
anomalous transient and finite-size effects.

In Figs. 1~a, b! we have plotted for several values of¸c
5(0.1,1,10) andL5(1,5), the CDE approximation~61!
against the exact result obtained numerically@30# by calcu-
lating the inverse Laplace transform of Eq.~60!. On the other
hand, form~62! and for the mentioned values of¸c we get
different critical valuesLc , thus, for example,

¸c50.1⇒Lc57.4162,

¸c51⇒Lc51.8027,
2-11
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¸c510⇒Lc50.55.

From Figs. 1~a, b! it is simple to check our prediction that fo
L&Lc the system-size analysis is very relevant.

Remark. Note that the presence of weak disorder redu
the dispersion coefficient@i.e., in an effective medium ap
proximation DL5 1

2 (d/dt)@^x2&2^x&2#→De f f}^1/w&21,
see for example, Appendix A#, then¸c5Kc DL /V2 will be
reduced too, and this fact will lead to an increase of
critical distanceLc , which ultimately will enhance the finite
size effects and consequently the transient anomalous dis
sion in the Coats-Smith approach.

It would be very important to have similar conclusio
concerning the scaling of the FPTD in the presence of str
disorder; work along this line is in progress.

FIG. 1. ~a! Log-log plot for the FPTD of the Coats-Smith pro
cess@obtained form Laplace inversion of Eq.~60!# as a function of
t ~dimensionless time! for L51 ~dimensionless distance! for sev-
eral values of̧ c(50.1,1,10) against the FPTD associated with t
CDE process~the Gaussian approximation~61!!. Log-log plot for
the FPTD of the Coats-Smith process as a function oft for L55 for
several values of̧ (50.1,1,10) against the FPTD associated w
the CDE process; using the same dimensionless units as in~a!.
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V. DISCUSSION

Many models of disorder can be studied from our me
scopic point of view, and such analysis could help to und
stand more complex systems~concerning hydrodynamic dis
persion in disordered media! that cannot be described by
CDE or a Coats-Smith model. In particular, if in addition
the heterogeneity there are multiple families of transp
paths, which could appear due to fractures in porous ro
this situation, in principle, can also be analyzed using
present approach. Therefore, for example, the first pass
time distribution of the test particle can be estimated; or
transient and the long-time response to the injection o
pulse can be calculated, etc. In particular, we have confi
our attention to models oftransition disorderandexchange
disorder. Transition disorder corresponds to randomness
the shapes and sizes of the microscopic elements of the tr
port paths; and exchange disorder corresponds to an a
metry in the exchange between the different paths@13,14#.
Just in order to unify the nomenclature with previo
literature—in the subject of disordered transport with m
tiple paths—let us now make a summary about the clas
cation of transition andexchangedisorder. Consider a two
path system, then the structure of thesupermatrixC is the
one that appears in Eq.~4!, so it is possible to realize that ou
matrix Bi j is related to the matrixW i j

11 of Ref. @14#, and so
Ai j is related to the matrixW i j

22. On the other hand, the
probabilityc j

BA(t) dt is related to probability rateEj
12 at site

j, and soc j
AB(t) dt is related toEj

21. Thus after introducing
the Hartree approximation, Eqs.~5! and ~6!, etc., it is clear
that the MCTRW approach induces not only memory, b
also additional coupling between the different paths as
be seen from the structure of Eq.~12!. As a matter of fact
from this structure it is simple to see that theexchangetran-
sitions are only associatedwithout changes of site, this result
of course was expected from the proposed structure~4!.

There are also other remarks concerning our approac
~a! The present formulation allows us to work out tran

tion disorderwith bias; as can be seen, for example, from E
~21!. This is something that was excluded from the approa
of Ref. @14# ~becauseW i j 5W j i ), although the presence of
macroscopic flow velocity is a fundamental ingredient in t
study of hydrodynamic dispersion. In fact, to solve an EM
with bias, without internal states, is a nontrivial problem
see, for example, Ref.@24#.

~b! The calculation of the first passage time distributi
can be done, at least in some approximation, thus the fin
size effects can be studied. This calculation is something
appears more subtle in the context of EMA~even for the case
without internal states!; see, for example, Ref.@31#.

~c! Non-Fickiang operators can be introduced in our a
proach to characterize some special transport mechanis
one of the paths; for example, transport in the fracture n
work of a reservoir is much faster than that in the por
Thus using that the transport in a random network of fract
can be described in terms of a space-time coupled funct
c l

T(k,u), see Ref.@25#, we can introduce the occurrence
stagnant volumes in the description by considering a sec
2-12
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alternative path like the one we have mentioned all along
paper.

~d! Another alternative is to consider the presence of r
dom advection in the description of the problem. For e
ample, if the mean velocity of the flowV is replaced by a
random vector fieldV(r ,t), the CTRW theory can also b
used to tackle this problem@32#; this situation is very impor-
tant in the geological analysis of stratified disordered me
@33#. Then we can use the present MCTRW approximation
consider this type of disorder and in addition with stagn
domains~multiple paths!.

Here it is important to remark that even when the M
TRW approach looks very powerful, the reader should
forget that the CTRW theory does not give the corr
anomalous exponent of the frequency-dependent diffus
coefficient; neither can it describe a percolation binary m
ture ~see, for example, Refs.@34,35#!. Thus the present MC
TRW approach should be considered as a sort of param
description for the mesoscopic problem, but with the pos
bility to obtain an analytic formula for the first passage tim
distribution. Therefore our approximation allows us to calc
late not only the long-time behavior but also the transien
complex systems like the one we have reported along
paper. As a matter of fact in a future work@28#, we are going
to analyze secondary oil recovery, by doing nonlinear lea
square fits from our analytic solution in the Laplace rep
sentation, see Eq.~55!.

A. Concerning the different waiting time functions

Suppose that we want to study an heterogeneous sy
where the stagnation times are characterized by a typ
distribution. The crudest approximation is to assume wh
there is acharacteristic time, given by a mean value of a
certain random variablew, which characterizes the ‘‘sym
metric transition rate’’ to getin or out of the stagnant vol-
umes. This approximation leads to the conclusion thatĉE(u)
is given by an exponential waiting-time function wit
^1/w&215Kc , see Eq.~A8!. By doing this we just reobtain
the Coats-Smith phenomenological model~1!. So if we want
to improve this approximation we could use an expans
like Eq. ~A7! to calculate each of the waiting-time function
ĉ21

E (u) and ĉ12
E (u) that characterize theexchange disorder.

Now suppose that the system presents long waiting tim
that characterize the different stagnation times of the m
dium, due, for example, to the occurrence of a broad dis
bution in the porosity of the system~noninterconnected
pores!. In this case~as was shown in Appendix A! the func-
tion ĉ l l 8

E (u) is not analytic aroundu;0. Thus, for example,
cE(t) is of the form~A4!, and so its Laplace transform ca
be parametrized by the expression~28!.

Consider now thetransition disorder, so, for example, we
can study the characterization of the macroscopic kinetic
efficientDL that appear in Eq.~1!. On the other hand, in the
phenomenological approach the mean flow velocity isV,
then in order to calculate theaverage over disorder of
(d/dt) j (t), we can use the Green function given in Sec.
For example, suppose that there is only one transport
~the pathB) and the presence oftransition weak disorder is
03630
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introduced by using the waiting time function,ĉ1
T(u)5(1

1tu)2b with $b>1,t.0% ~this function is associated with
gamma distribution for the waiting times of the RW into th
transport channel; ifb51 there is nodisorder!. Assuming, as
is usual in the CTRW theory, that all the lattice sites a
topologically equivalent, we can adopt a two-dimension
hopping structure function as the one given in Eq.~22!, then
it is simple to see that (d/dt)^ j (t)&}V/b with V}(2py
12px21)a/t in the continuous limit.

B. Summary of the present approach

The finite-size effects can be studied, see, for exam
Eq. ~62!. The present approach gives us the possibility
study the occurrence of different scaling regimes a
asymptotic universal forms—for the problem of finite-si
anomalous hydrodynamic dispersion—as we have done
the Markovian approximation in Sec. IV A 1; i.e., from Eq
~55! a formula for the FPDT generalizing Eq,~57! can be
written considering disorder in the interconnected and n
interconnected pores~backbone and dead-end domains!.

Our approximation allows us to introduce non-Fickian o
erators~with or without bias!, and consider models wher
exchangeandtransitiondisorder are present simultaneous
this is something that in the context of the EMA with mu
tiple paths has not been treated@14#.

We would like to emphasize that an analysis with diffe
ent boundary conditions can also be worked out because
know the matrix Green function~with multiple paths!, see
Eq. ~35!.

Before ending this section let me comment about a v
interesting paper concerningnoninterconnected pores~po-
rosity and permeability! written by de Gennes@36# ~a simpler
description was also given in Ref.@37#!. de Gennes studied
stagnation effects in the hydrodynamic dispersion in uns
urated porous media, making a connection with the topolo
of the infinite cluster in a percolation problem. He was ab
to predict the behavior of the dispersion coefficientDL as a
function of the macroscopic flow velocity, the percolatio
correlation length, and the diffusion constant in the abse
of flow. Here I should tell thatthe de Gennes approach, th
EMA with multiple paths, and the MCTRW approximatio
complement each other to tackle the still fascinating sub
of anomalous hydrodynamic dispersion in heterogenous
dia.
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APPENDIX A: THE WAITING-TIME FUNCTION AND THE
MODELS OF DISORDER

Depending on the analyticity~around u;0) of the
waiting-time functionĉ(u) it is possible to characterize dif
2-13
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ferent types of disorder. In the context of the CTRW the
exists a clear relation between a model of disorder and
waiting-time function, which is given by@22#

c~s2s8,t !5K Ws,s8expS 2t(
s

Ws,s8D L
Disorder

. ~A1!

In the present paper we are dealing with a family of m
tiple paths, so we have introduced internal states in the
scription of the process, that is why here we are intereste
a MCTRW; thus we have to calculate an average as in
~5! or Eq. ~6!.

Let us consider theexchangeprobabilities, i.e., for ex-
ample, assume that there are only two possible paths,
for a given realization of the disorder the waiting time for t
exchangefrom pathB to A is

c j
AB~ t !5W AB~ j !exp@2W AB~ j ! t#,

where, in principle,W AB( j ) is an arbitrary probability rate
that indeed depends on the sitej. The fundamentalansatzin
order to be able to calculate the average over the disord
that W AB( j ) is a random variable equally distributed ov
the sites of the lattice. Then it follows that

^W AB~ j !exp@2W AB~ j ! t#&Disorder

5E w exp~2w t! P~w! dw

[^w exp~2w t!&. ~A2!

It is now clear that depending on the nature of the pr
ability density P(w), different waiting-time functions will
arise. Consider, for example, a model of strong disorder~i.e.,
there is a chance to getw50 with a finite probability!,

P~w!5H u

w0
~w/w0!u21, 0<w<w0 , uP~0,1!

0, w.w0 .
~A3!

Then from Eq.~2! we get

c21
E ~ t !5

uw0

t̃ u11
g~u11,t̃ !, uP~0,1! with t̃ 5w0t.

~A4!

Hereg(u11,t̃ ) is the gamma incomplete function, thus f
t̃→` we can useg(u11,t̃ )→G(u11), and from this we
get an asymptotic expression~for long times! for the waiting-
time function

c21
E ~ t !;

uG~u11!

w0
utu11

, uP~0,1!,t→`. ~A5!

It is simple to see that the Laplace transform of th
asymptotic expression is~using the Tauberian theorem
aroundu;0)
03630
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ĉ21
E ~u!;12Cuu, u→0,uP~0,1!,C5const. ~A6!

From this expression we see that foruP(0,1), the function
ĉ21

E (u) is not analytic aroundu50.
If instead of Eq.~B3! we use a probability distribution

such that lim
w→0

P(w)→0 ~weak disorder!, the average~B2!

may lead to a waiting time which can be an analytic functi
around u50. Thus, for example, the quantity
2dĉ21

E (u)/duuu505*0
`tc21

E (t) dt5^t& is well defined, and
it is in fact the mean waiting time. This result shows th
weak disorder can lead to memory functions~when the wait-
ing time is not exponential! but with a well-defined mean
waiting time @20–22#. Alternatively, this effective waiting-
time function can be calculated using the fact thatĉ(u)51
2uf̂(u), wheref̂(u)5^1/(u1w)&. Then, if the quantities
^(1/w)m&, ;m51,2, . . . arewell defined, we can write the
series expansion

ĉ~u!512uf̂~u!512 K u

u1wL 5 (
m50

`

~2u!mK S 1

wD mL .

~A7!

Thus, in the presence of weak disorder we can write asy
totically

lim
u→0

ĉ~u!.12u K 1

wL .S 11 K 1

wL uD 21

,

which means that at long time and if the disorder is weak,
can approximate the waiting time by an effective exponen
function

c~ t !' K 1

wL 21

expS 2 K 1

wL 21

t D . ~A8!

This result, in the context of the CTRW, corresponds to
conclusion that weak disorder renormalizes the kinetic co
ficients.

APPENDIX B: THE FIRST PASSAGE TIME
DISTRIBUTION

Depending on the meaning of the internal statesl an al-
ternative definition for the FPTD can be introduced. Th
here we are going to present a different point of view
define the FPTD in the presence of internal states. If
lattice itself is homogeneous@27# but the walker can be in

different internal statesat a given site~i.e., spin1
2 or

21
2

), so

( j ,l 9) and (j ,l ) represent different states at the same s
then Eq.~53! should be replaced by
2-14
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Pll 8~ j ,tu0,0!5f l 8~ t ! d j 0d l l 8

1E
0

t

(
l 9

Pll 9~ j ,tu j ,t8!Fl 9 l 8~ j ,t8u0,0!dt8.

~B1!

As before, from this equation it is possible to get a solut
for Fl 9 l 8( j ,t8u0,0). From the Laplace representation of E
~1! we get
ts

s.

tl

rix

03630
n
.

(
l 9

P̂ll 9~0,uu0,0!F̂ l 9 l 8~ j ,uu0,0!

5 P̂ll 8~ j ,uu0,0!2f̂ l 8~u! d j 0 d l l 8. ~B2!

Now we can use thatP̂ll 9( j ,uu0,0) can be written in terms
of the inverse Fourier transform of the matrix Green fun
tion. Therefore from Eq.~35! we have inn dimensions,
P̂ll 9~ j ,uu0,0!5
a1

2pE0

2p/a1
•••

an

2pE0

2p/an
@F̂~u!•Q̂~k,u!# l l 9exp~2 ik• j ! dk1 . . . dkn . ~B3!
e-
e

From the definitionQ̂(k,u)[@12ĥ(k,u)#21, and using the
inverse matrix of Eq.~3! in Eq. ~2! we get the final result

F̂~ j ,uu0,0!5Q̂~ j 50,u!21
•Q̂~ j ,u!2Q̂~ j 50,u!21d j 0 d l l 8.

~B4!

Here F̂( j ,uu0,0) indicates a matrix with the elemen
F̂ ll 8( j ,uu0,0), and

Q̂~ j ,u!5
a1

2pE0

2p/a1
•••

an

2pE0

2p/an
@12ĥ~k,u!#21

3exp~2 ik• j ! dk1 . . . dkn .
Equation~B4! gives the desired result~in its Laplace rep-
resentation!, i.e., the FPTD from the originj 50 with inter-
nal statel 8 at timet50, to sitej with internal statel at time
t; counting the different events~mutually exclusive! to give
the possibilities to reach the state (j ,l ) passing through all
the states (j ,l 9). Compare the subtle difference with the r
sult given in Eq.~55!. For example, here the return to th
origin is expressed by the formula

F̂ ll ~ j 50,uu0,0!512@Q̂~ j 50, u!21# l l .
m-

lk
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vertéS.A., Barcelona, 2003!.

@22# H. Scher and E.W. Montroll, Phys. Rev. B12, 2455 ~1975!
@see Appendix D#.
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